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Abstract: This paper presents the results of studies on the analytical dependence between the value of a 
longitudinal distributed load and the frequency of free vibrations in a uniform rod. Based on the exact solution of 
the corresponding differential equation, a method for calculating vibrations in rod structures, while considering their 
dead weight, is implemented. The method algorithm is shown using the example of a rod with both ends clamped. 
This article contains graphs and analytical formulas for displaying dependencies. A table is provided that contains 
all the necessary coefficients to perform similar calculations for other boundary conditions. These results allow the 
physical and mechanical characteristics of a system to be used to determine the natural frequency of rod structures 
without using approximate methods. 
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1 INTRODUCTION 

When designing structures, it is necessary to consider all possible influences to which they can be subjected during 
construction and operation. Most of these effects are dynamic. This issue is becoming increasingly relevant 
because of the increase in the height of modern construction, attempts to minimize the material consumption of 
structures, and development in areas with seismic activity. The dynamic parameters of structures can be estimated, 
based on an analysis of such characteristics as the frequencies and modes of natural vibrations. The presence of 
these data allows the stiffness and operability of the structure to be analyzed and the correctness of construction 
decisions to be evaluated, as well as ensuring a high-quality design. 

Many materials and publications have been devoted to investigating the influence of longitudinal loads on the 
bending vibrations of various types of rod structures. In [1], based on the energy method, empirical formulas for 
studying the vibrations of uniform beams under various boundary conditions and axial loads were obtained. In [2], 
the authors studied the vibrations of frame structures by considering the influence of the axial load. An equivalent 
rod was used as a design model of buildings in this study. Its stiffness and weight should be evenly distributed 
along the length. Reference [3] is devoted to an experimental study on the influence of axial force on the vibration 
frequency of a rod. This study attempts to find a connection between theoretical models and phenomena occurring 
in the real world.  

In [4], the vibrations of clamped rods were studied using numerical methods. Specifically, the influence of the 
mass and damage on the natural frequency of vibrations was studied. The bending vibrations of structures, 
considering their own weight, were studied in [5]. Similar to most of these publications, approximate calculation 
methods were used. In [6], the frequencies of free and seismic vibrations of a building were determined using 
simulations in software systems. In [7], the influence of a variable longitudinal force on a rod with free ends was 
determined. Reference [8] investigated uniform rods under a constant longitudinal force. Using graphs, it presented 
how the influence of changes in force was dependent on the frequencies of natural vibrations and the main modes 
of vibration for all types of boundary conditions. 

Often in scientific literature, the longitudinal force is assumed to be constant along the length of a structure 
[8–12]. However, it is clear that, in real life, the longitudinal force has different values at different points of the 
structure. A common design scheme for studies on the bending vibrations of buildings and structures is the uniform 
rod under a variable longitudinal force, which represents the dead weight of the structure. For such a physical 
phenomenon, the mathematical model is typically represented by a differential equation with variable coefficients 
[13, 14], which makes it difficult to construct an exact solution. 

The exact solution of the corresponding equation of motion obtained in [15], using the direct integration 
method, made it possible to take the study of vibrations of rod structures to a qualitatively new level. It also made 
it possible to establish analytical relationships between the characteristics of a mechanical system and the 
frequencies of natural vibrations [16]. The present work is the final one in the study of this problem and aims to 
demonstrate the steps for calculating the frequency of natural vibrations in the rods and to present the main results 
found by the authors. 

2 INITIAL EQUATION AND ANALYTICAL SOLUTIONS 

In construction problems, the dead weight is considered as a longitudinal distributed load, which means that the 
rods are in a vertical position. In the specialized literature related to construction problems [14], four main schemes 
are usually considered: 

- A cantilever rod with a free upper end (free – clamped); 
- A hinged rod (pinned – pinned); 
- A rod, clamped at the lower end and hinged at the upper end (clamped – pinned);  
- A rod with both ends clamped (clamped – clamped). 
In this paper, the step-by-step algorithm of the study will be presented, using the example of a rod with both 

ends clamped. Fig. 1 shows the general scheme of the vibrations of the rod. Fig. 2 shows the external and internal 
forces acting on the element of the rod. 
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Figure 1 Bending vibrations of the rod, considering 
the longitudinal force 

Figure 2 Internal and external forces acting on the rod 
element 

List of symbols: 
EI   Flexural rigidity of a rod; 
m  Intensity of the distributed mass (own weight) of the rod; 

( )N x qx   Variable axial (compressive) force, where q   weight per unit length of column; 

( , )y x t   Cross motion of the axis point of the rod with coordinate x  at time t  (dynamic deflection); 

( , )x t   Dynamic angular displacement; 

( , )M x t   Dynamic bending moment; 

( , )Q x t   Dynamic shear force; 

( , )f x t   Intensity of the inertial forces that appear during vibration (D’Alembert's force). 

As has been shown [12–14, 17], the mathematical model of such a physical phenomenon is a partial differential 
equation with variable coefficients: 

4 2

4 2
0

y y y
EI q x m

x xx t

    
      

  (1) 

For the dynamic parameters of the rod state, the following view is taken: 

( , ) ( ) ( ); ( , ) ( ) ( ); ( , ) ( ) ( ); ( , ) ( ) ( )y x t v x T t x t x T t M x t M x T t Q x t Q x T t       (2) 

Where:  

( )v x  amplitude value of the transverse deflection, which depends only on variable x ;  

( )T t  function of time t ;  

( ), ( ), ( )x M x Q x amplitude functions that are connected by the following equalities: 

( ) ( ); ( ) ( ); ( ) ( ) ( ) ( )x v x M x EIv x Q x M x N x v x         . 

In [15], an exact solution of (1) was presented. They provided the formulas for the uniform rod’s state parameters, 
expressed in terms of the initial parameters and fundamental dimensionless functions, which have the following 
form: 

2 3

1 2 3 4( ) (0) ( ) (0) ( ) (0) ( ) (0) ( )
l l

v x v X x lX x M X x Q X x
EI EI

      (3) 

2

1 2 3 4

1
( ) (0) ( ) (0) ( ) (0) ( ) (0) ( )

l l
x v X x X x M X x Q X x

l EI EI
       (4) 
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EI EI
M x v X x X x M X x Q lX x

ll
       (5) 

1 1 2 23 2
ˆ ˆ( ) (0) ( ) ( ) (0) ( ) ( )

EI x EI x
Q x v X x X x X x X x

l ll l
     

        
   

 

3 3 4 4

1 ˆ ˆ(0) ( ) ( ) (0) ( ) ( )
x x

M X x X x Q X x X x
l l l

 
   

     
  

 

 (6) 

Where: 
3ql

EI
    (7) 

ˆ( ), ( ),  ( ),  ( )  ( 1 2 3 4)n n n nX x X x X x X x n , , ,  – fundamental dimensionless functions, which are defined in [15]. 

The above formulas include a dimensionless parameter . It is believed that attention should be particularly 

focused on it because this value characterizes the mechanical system. 
The presence of these equations in the form of dimensionless values makes it possible to further study the 

analytical dependencies. It should be noted that the formulas can be used for any boundary condition. 

3 INVESTIGATION OF THE ROD’S VIBRATIONS  

The dynamic boundary conditions of a rod with both ends clamped have the following form: 

(0, ) 0;   (0, ) 0;   ( , ) 0;   ( , ) 0y t t y l t l t     . 

Implementing these conditions using the exact formulas (2)–(6) leads to a frequency equation. In terms of the 
dimensionless function, the frequency equation for the current boundary conditions has the following form: 

3 4 3 4( ) ( ) ( ) ( ) 0X l X l X l X l  . 

Alternatively, this can be written such that the left part contains a convergent power series of dimensionless 
parameter K : 

2 4 6

0 1 2 3 ... 0K K K          (8) 

The dimensionless coefficients of the equation ( 1,2,3,...)k k   can be determined by the following formulas: 

3, 4, 3, 4,

0

( ( ) ( ) ( ) ( ))
k

k j k j j k j

j

l l l l     



   (9) 

Where: 
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   . 

The following set of recurrence formulas is used to determine the dimensionless coefficients of the series [15]: 
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( 1)!nс n
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;  
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2

, 1, , , , , 1

, ,

, , , , , , , ,

( 3)

( 3)( 2)( 1)

n k j n k j n k j

n k j

n k j n k j n k j n k j

c f c
c

f f f f

  


  
, 

Where: 

, , 4 3 1 ( 3,4)( 0,1,2,...)( 0,1,2,...)n k jf n k j n k j       . 

3.1 Natural frequencies of the rod 

Because the solution of the equation was constructed in terms of fundamental functions, it was possible to obtain 
an analytical representation of the spectrum of vibration frequencies [15]: 

2
( 1,2,3,...)

j

j

K EI
p j

l m
    (10) 

Here,
jK includes the dimensionless coefficients that are dependent on q  and are determined by the frequency 

equation. Therefore, the task of determining the frequencies of the clamped rod was reduced to determining the 
dimensionless vibration coefficients. From the above formulas, it is obvious that the values of the roots 

1 2 3, , ,...K K K  depend on the dimensionless parameter . The relevant range of change for this parameter will be 

set. 
Earlier in [18], the authors investigated the stability of rods loaded with their own weights under various 

boundary conditions. The obtained results were also confirmed by the stability theory [19, 20]. It was found that a 
clamped rod under the action of a distributed load will lose stability when: 

,1 3
74.6286cr cr

EI
q q

l
    (11) 

Therefore, it is meaningless from a practical point of view to consider the vibrations of a rod with q  values greater 

than crq . Therefore, the values of longitudinal loading relevant to the study lie within the interval 0 crq q  . 

Substituting crq q  into formula (7) gives the maximum possible value of : 
3

max 74.6286crq l

EI
   . 

Hence, the values of   relevant for investigation lie in the interval 74. 860 62  . 

Table 1 shows the results of calculating the first three vibration coefficients for the values of parameter   

from the specified permissible interval, equidistant from each other in increments of 7.4629. 

Table 1 Vibration coefficients 

  
1K  2K  3K  

0.0000 22.3732 61.6729 120.9034 

7.4629 21.3154 60.2594 119.3652 

14.9257 20.1858 58.8033 117.8027 

22.3886 18.9704 57.3009 116.2147 

29.8514 17.6495 55.7484 114.6003 

37.3143 16.1952 54.1411 112.9584 

44.7772 14.5649 52.4738 111.2879 

52.2400 12.6869 50.7405 109.5874 

59.7029 10.4228 48.9341 107.8557 

67.1657 7.4178 47.0460 106.0915 

74.6286 0.0000 45.0657 104.2931 

It is evident that, as parameter   approaches the maximum value from the stability conditions, and therefore, the 

longitudinal load approaches its critical value, the first vibration frequency of the rod approaches 0. The values of 

the second and third frequencies decrease. To explain the decrease of the coefficient’s 1K  values, the theory of 

stability is again considered. 
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3.2 Limits of vibration-coefficient values 

Consider the same design scheme: a uniform rod under a longitudinal distributed load. The stability of such a rod 
is described by the well-known equation [20, 21]: 

( ) ( ( )) 0EIy x q xy x      (12) 

After performing the necessary calculations [18], the critical value of the load (11) is obtained. However, considering 
the presence of neighboring figures of equilibrium [21] and using the results of [18], the solution of equation (12) 
can be satisfied by other values: 

,2 ,33 3
;149.0095 381.3606cr cr

EI EI
q q

l l
  . 

Substituting the above values of crq  into formula (7), the corresponding values of parameter   are obtained. 

Now, consider the vibrations of a clamped rod on a new interval 381. 600 3 6  . 

Similarly, after performing the necessary calculations and obtaining a set of values for vibration coefficients

1 2 3, ,K K K , graphs of the dependence of the vibration coefficients on the change in parameter   were 

constructed: 

 

Figure 3 Graph of the dependence of vibration coefficients on parameter   

As can be seen, the vibration coefficients (and, consequently, the value of the natural-vibration frequency) reach 
zero when parameter   of the corresponding form of stability reaches a critical value. Despite the existence of 

neighboring figures of equilibrium, rod vibrations are usually considered within the limits of the usual perception of 
stability; that is, until   exceeds the critical value of the first form of stability. 

3.3 Analytical dependencies 

Considering coefficient 
jK  as a function of variable , and having a set of values of this function, it can be 

approximated using a polynomial. To achieve a highly accurate approximation, the degree of the polynomial was 
chosen such that the determination coefficient was not less than 0.9999. A high value for the coefficient of 
determination was also achieved because of the large array of calculated values obtained for different values of

jK . 

The calculations showed that, for the third and second vibration coefficients, the value of the determination 
coefficient will be practically equal to unity, by the quadratic approximation. For the first coefficient, through the 
interval with a sharp decline in the graph, it was necessary to approximate it with a sixth-degree polynomial. The 
final formulas have the following form: 

4

1

2 3 7 522.3732 0.0074 0.02897 0.001864 0.0000541 7.2 10K            

9 63.5 10    
 (13) 
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2

2 61.6729 0.18171 0.00054K      (14) 
2

3 120.9034 0.20339 0.00026K      (15) 

Substituting (13)–(15) into (10), the following analytical formulas can be obtained for determining the first three 
frequencies of free vibrations of clamped-end rod structures: 

3

1

2 4 7 522.3732 0.0074 0.02897 0.001864 0.0000541( 7.2 10p             

2

9 63.5 10
1

)
EI

l m
   

 (16) 

2

2 2
61.6729 0.18171 0.00054

1
( )

EI
p

l m
     (17) 

2

3 2

1
120.9034 0.20339 0.00026( )

EI
p

l m
     (18) 

With these formulas, and knowing the characteristics ,q l ,q l  and EI , it is possible to determine the vibration 

frequencies of the rod structures, considering their own weight, without using approximate methods. 

A relationship can be established between frequencies 1 2 3, ,p p p  and the corresponding vibrational 

frequencies of the rod without considering its own weight
1 2 3, ,   . Recall that they are determined by the 

following well-known formulas [11]: 

1 2 32 2 2

22.3732 61.672 120.9039
;

4
;

EI EI EI
m m ml l l

     . 

Obviously, these formulas are partial cases of (16)–(18). By comparing the vibration coefficients, it is easy to 
establish a connection between frequencies, with and without considering their own weights: 

2 5 3 5 4 8 5 10 61

1

1 0.00033 0.00130 8.33 10 10 3.2 10 1.565.4 10
p

     


             ; 

6 22

2

0.002951 8.8 10
p

 


    ; 

6 23

3

0.001681 2.15 10
p

 


    . 

Formula (7) may also be submitted in the form: 

74.6286
cr

q

q
  . 

Substituting the ratio of the frequencies for parameter   produces the ratio of the frequency in terms of the value 

of the longitudinal load q : 
2 3 4

1

1

1 0.02469 7.21263 34.63602 75.02673
cr cr cr cr

p q q q q

q q q q

     
      

    



    

5 6

74.5226 27.03711
cr cr

q q

q q
 

   
   
   

 

 (19) 

2

2

2

0.219891 0.04877
cr cr

p q q

q q

 
    

 
  (20) 

2

3

3

0.125551 0.01198
cr cr

p q q

q q

 
    

 
  (21) 
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These relationships can be represented graphically. 

 
Figure 4 Graph of the dependence of p1/ω1 on the longitudinal load q 

 
Figure 5 Graph of the dependence of p2/ω2 on the longitudinal load q 
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Figure 6 Graph of the dependence of p3/ω3 on the longitudinal load q 

By performing the same calculations for rods with other boundary conditions, the corresponding values for the 

vibration coefficients ( 1,  2,3)jK j   and the formulas for the frequency of natural vibrations are obtained. 

Table 2 Summary table 

Type Drawing Information 

Free 
Clamped 

 

2 3

4 5 6

2

2

1

2

3

8373

3.5160 0.0288 0.33434 0.1984528

0.0545128 0.006863 0.00

0 7

03252

22.0345 0.1959 0.0010

61.697

.

(

2 0.2022 0.000

0) 0;   (0) 0

( ) 0;   ( ) 0

4

M Q

y l l

K

K

K
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Pinned 
Pinned 

 

2 3

1

2

2

3

4 5 6

2

18.5687

9.8696 0.03217 0.23408 0.060923

0.007097 0.0003757 0.0000074

39.4784

0

(0) 0;   (0)

0.2491 0.0011

88.8264 0.24984 0.000

0

( ) 0; ( )

44

0

y M

y l M l

K

K

K



  

  

 

 

  

  



 

 

 



 







 

Pinned 
Clamped 

 

2 3

4

1

2

2

3

5 8 6

2

52.5007

15.4182 0.00323 0.03941 0.003597

0.0001472 0.0000027 1.9 10

9646 0.1809 0.00059

2477 0.202

0

(0) 0;   (0) 0

( ) 0;   ( ) 0

49.

10 67 0.000284.

y M

y l l

K

K

K





  

  

 

 



 



  





  



 

 



 





 

Clamped 
Clamped 

 

2 3

1

2

4 7 5 9 6

2

3

2

74.6286

22.3732 0.0074 0.02897 0.001864

0.000

0

(0

0541 7.2 10 3.5 10

61.6729 0.18171 0.00054

120.9034 0.20339 0.

) 0;    (0) 0

( ) 0;   (

0

) 0

0026

y

y l l

K

K

K







  

  

 

 

 

 

 

 

   

    

 

 







 

 
The parameters given in Table 2 make it easy to calculate the frequency of the natural vibrations of the rods, 
considering their own weight, without using applications and approximate methods. 

The values of the vibration coefficients for the rods, without considering their own weights, are already known 
[11, 21]. These data are listed in a separate table. 

Table 3 Vibration coefficients for weightless rods 

  Free 
Clamped 

Pinned 
Pinned 

Pinned 
Clamped 

K1 3.5160 9.8696 15.4182 

K2 22.0345 39.4784 49.9649 

K3 61.6972 88.8264 104.2477 

By determining the vibration frequencies of the rods by considering their own weight, one can determine the 
relationship between the natural-frequency values by taking their own weight into account for some conditions, and 
without taking it into account for other types of boundary conditions. 

4 CONCLUSION 

Among the results of the work, the following should be highlighted: 
1. Formulas for the first three frequencies of natural vibrations of the rod system were obtained in an analytical 
form. 
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2. The relationship between the vibration frequencies, with and without considering the dead weight of the 
structure, was determined in an analytical form. It was established that a rod's own weight leads to a decrease 
in the frequency of natural vibrations, in comparison with the corresponding frequencies of a weightless rod. 
3. The larger the value of the longitudinal load, the greater the difference between the vibration frequencies. 
When the value of the longitudinal load is increased to critical, the value of the rod's corresponding vibration 
frequency approaches 0. 

Table 2 shows all the necessary parameters, further simplifying the process of determining the frequency of natural 
vibrations, considering their own weight. Actually, determining the frequency is reduced to determining the vibration 
coefficients from known analytical formulas. The presence of results allows the vibrations of the rod structures to 
be calculated, without using approximate methods. 
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