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Abstract: Alterations to the sediment regime of the lower Drava River were assessed using the rescaled adjusted 
partial sums (RAPS) method and possible causes of these changes are discussed in this paper. The sudden 
alteration to sediment regime and the sharp decreases of suspended sediment concentration (SSC) at the two 
gauging stations in the lower Drava River began in the 1980s. Suspended sediment load decreased about 65% 
between 1967–1981 (0.922×106 t/year) and 2003–2017 (0.323×106 t/year) for the Botovo station. For the Donji 
Miholjac station, suspended sediment load decreased about 81% between 1971–1981 (1.383×106 t/year) and 

2007–2017 (0.263×106 t/year). The construction and operation of reservoirs were the main reasons for these sharp 
alterations. SSC and flow discharge (Q) relationships were assessed by proposing a new form of a sediment rating 
curve (SRC). Compared with the traditional SRC approach, the new form of the SRC can better capture seasonal 
dynamics of SSC at daily and monthly time-scales.  
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PROCJENA PROMJENA REŽIMA SUSPENDIRANOG NANOSA NA DONJEM 
TOKU RIJEKE DRAVE 
 
Sažetak: Promjene režima suspendiranog nanosa na donjem toku rijeke Drave izučavani su primjenom metode 
RAPS (Rescaled Adjusted Partial Sums). Rezultati analize pokazali su da je do nagle promjene režima nanosa i 
smanjenja koncentracije suspendiranog nanosa (SSC) na dvije vodomjerne postaje na rijeci Dravi došlo početkom 
osamdesetih godina dvadesetog stoljeća. Pronos suspendiranog nanosa na postaji Botovo smanjen je u razdoblju 
2003. - 2017. (0.323 × 106 t/god) u odnosu na prethodno razdoblje 1967. - 1981. (0.922 × 106 t/god) za oko 65%. 
Pronos suspendiranog nanosa na postaji Donji Miholjac smanjen je u razdoblju 2007. - 2017. (0.263 × 106 t/god) u 
odnosu na prethodno razdoblje 1971. - 1981. (1.383 × 106 t/god) za čak oko 81 %. Glavni razlog smanjenja je 
izgradnja akumulacija za potrebe rada tri hidroelektrane u Hrvatskoj. Odnos između SSC i protoka (Q) korišten je 
za izradu krivulje pronosa suspendiranog nanosa (SRC) u novim uvjetima. Analize ukazuju da su SRC u novim 
uvjetima osjetljivije na sezonsku dinamiku od onih u prethodnom razdoblju. 
 
Ključne riječi: pronos suspendiranog nanosa; protok vode; akumulacija; krivulja pronosa suspendiranog nanosa; 

Rijeka Drava (Hrvatska) 
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1 INTRODUCTION  

Suspended sediment concentration (SSC) and sediment load are important characteristics in river geomorphology 
and are closely related to the geological settings of river systems [1-3]. Since suspended sediment carries 
contaminants, including phosphorus and heavy metals [4, 5], it affects the water quality of rivers [6]. Additionally, 
suspended sediment impacts light attenuation in waterbodies, which further influences the development of aquatic 
communities [7-9]. Thus, the assessment of SSC and sediment load is of great significance for sustainable 
management of river systems. 

In the past few decades, with the impacts of anthropogenic activities, including damming [10-13], land use 
change [14, 15], and climate change [11, 14], sediment regime in many rivers has been dramatically altered. For 
example, Dai et al. [16] found that dam construction and bank reinforcements along the Yangtze River resulted in 
a decline in SSC delivered by the Yangtze River into the East China Sea. The change of sediment regime in rivers 
may cause serious consequences, including the prevention of burrowing benthos from finding suitable habitats [17] 
and negative impacts on delta evolution [18]. Therefore, understanding how sediment regime has changed under 
complex conditions is very important. 

The Drava River is one of the largest tributaries of the Danube River. It originates in Italy, crosses Austria, 
Slovenia, Hungary and Croatia, and finally joins the Danube River downstream of Osijek, Croatia (Figure 1). 

Previously, Bonacci et al. [19], Bonacci and Oskoruš [20], and Tadić and Brleković [21] analyzed the hydrological 
regime of the lower Drava River. Additionally, Bonacci and Oskoruš [22], and Tamás [23] analyzed human impacts 
on water regime in the lower Drava River, and sediment transport in the Drava River, respectively. In the current 
study, long term observation data were used to assess sediment regime in the lower Drava River, which allows 
explanation of the processes of river evolution. Furthermore, models were developed to estimate SSC and flow 
discharge (Q) relationships at different time-scales; such relationships can be used to inform river management 
and for designing restoration. Since the Drava River is a large tributary of the Danube River, the results in this study 
can also be used to inform river management in the Danube River basin. 

2 MATERIALS AND METHODS 

2.1. Study area 

In this study, the lower Drava River, between Slovenian and Croatian state boundaries, was evaluated. Daily Q and 
SSC from two gauging stations (Botovo and Donji Miholjac) were analyzed (Figure 1; data provided by the Croatian 
Meteorological and Hydrological Service). SSC data were obtained from daily water samples taken from one point 
(close to the riverbed in water gauging profile). These samples were taken at the same hour every day. Because 
both sampling sites (Botovo 28 km; Donji Miholjac 178 km) are far from the downstream reservoir Dubrava, possible 
effects of the operation of Hydro Electric Power Plants (HEPP was minimized. Each sample was poured through a 
0.45 μm thick filter paper (320 mm diameter Munktell filter paper). Daily Q was calculated from hourly values based 
on hourly measurements of water level (WL). The WL-Q RK method was used for hourly calculations of Q. The 
defined RK varied over time due to morphological changes of the river bed. Consequently, many rating curves were 
calculated, but only two RK examples per station are presented herein: the newest one, and one in 2009 (Figure 
2). The main characteristics of the two gauging stations, including distance from the river mouth, basin area, 
elevation and the available data period are summarized in Table 1. Table 2 presents the detailed information of 
three hydroelectric power plants (HEPP) constructed in the lower Drava River. Figure 3 presents the daily SSC and 
Q time series for the two gauging stations. Table 3 summarizes the statistics of the daily SSC and Q. Q of the two 
stations generally followed the same temporal pattern with Botovo station having higher extreme values in the flood 

season (Table 3). Difference of annual mean value of Q between the two stations was small since there were no 
large tributaries between Botovo and Donji Miholjac. The standard deviations of SSC data were much greater than 
the averages, which indicates a very big scatter (Table 3) or can also indicate incoherence of the sampling methods 
used. SSC of the two stations presented large difference, especially during the flood season (Figure 3).  
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Figure 1 Location maps of the Drava River, with positions of five gauging stations and three HEPP (I-

HEPP Varaždin; II-HEPP Čakovec; III-HEPP Dubrava) [20] 
 

 

 
Figure 2 The WL-Q RK relationships for each station: (a) Botovo 2009, (b) Botovo 2017–2019, (c) Donji 

Miholjac 2009, (d) Donji Miholjac 2017–2019 

Table 1 Main characteristics of the two gauging stations in the lower Drava River 
 

Station name Distance from the mouth (km) Basin area (km2) Elevation (m a. s. l.) Observation period 

Botovo 227 31.038 121.55 1967–2017 
Donji Miholjac 80.5 37.142 88.57 1971–2017 

 
Table 2 Main characteristics of the three hydroelectric power plants (HEPP) in the lower Drava River 

 
HEPP Varaždin Čakovec Dubrava 

Start of operation (year) 1975 1982 1989 
Installed discharge (m3/s) 450 500 500 

Mean power generation (GWh/year) 476 400 385 
Reservoir volume (106 m3) 8.0 51.0 93.5 

Reservoir water surface (km2) 3.0 10.5 16.6 
Maximum water level in the reservoir (m a. s. l.) 191.0 168.0 149.6 
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Table 3 Summary statistics of the daily data sets 
 

Statistical parameters 
Botovo   Donji Miholjac  

Q (m3/s) SSC(mg/L) Q (m3/s) SSC (mg/L) 

Xmean 490.43 23.74 513.22 29.33 

Xmax 2630 701 2281 891 
Xmin 103 0.03 166 0.01 
Sx 241.66 31.39 236.10 40.34 
Cv 0.49 1.32 0.46 1.38 

Note: Xmean, mean; Xmax, maximum; Xmin, minimum; Sx, standard deviation; Cv, coefficient of variation 

 

 

 
Figure 3 Time series of daily SSC and Q for the two gauging stations: (a) SSC and (b) Q 

 

2.2 Methods 

To detect and quantify trends and fluctuations in sampled time series, the widely used rescaled adjusted partial 
sums (RAPS) method [20, 24-26] was employed in this study. The RAPS method can highlight trends, shifts, data 
clustering, irregular fluctuations, and periodicities in the time series [24], which can be defined by: 
 

𝑅𝐴𝑃𝑆𝑖 = ∑
𝑇𝑛−𝑇𝑚

𝑆𝑇

𝑖
𝑛=1                (1) 

 
where Tm is the mean value of the time series, ST is the standard deviation, Tn is the value of a sample, and 

n=1, 2…, N, N is the number of values in the time series. 
To quantitatively analyze SSC-Q relations at daily and monthly time-scales, the widely used sediment rating 

curve (SRC) was employed. The SRC was used to regress sediment load, in particular SSC in river systems, from 

Q [27-30]. Normally, a power equation is used: 

𝑆𝑆𝐶 = 𝑎𝑄𝑏                 (2) 
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where a and b are regression coefficients. In the SRC method, the coefficients a and b are constants without 
physical significance; however, some researchers still attribute meaning to them, relating them to the severity of 

erosion and transport processes [27, 30].  
 

2.3 Model performance index 

Model performances were evaluated using the following two indicators: the coefficient of correlation (R) and the 
root mean-squared error (RMSE): 
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where n is the number of data samples, Oi and Pi are the observed and predicted values. Om and Pm are the 

average values of Oi and Pi. 

3 RESULTS AND DISCUSSION 

3.1 Variations of Q, SSC, water level, and suspended sediment load 

Figure 4 presents temporal variations of RAPS values for annual averaged Q, SSC and the amount of suspended 
sediment at the two gauging stations. For Botovo station, a sharp drop of Q, SSC and suspended sediment load 
began from 1982 (Figure 4(a)), thereby dividing the time series into two sub-periods: the first from 1967 to 1981, 
and the second from 1982 to 2017. Interestingly, with the decrease of Q, SSC and suspended sediment load, the 
water level (WL) began to increase (Figure 4(a)), which clearly indicates a change to the river bed [22]. Figure 5 
shows the relations of Q and WL at Botovo station for the two sub-periods, 1967–1981 and 1982–2017. Before 
1982, WL was linearly correlated with Q (R2=0.96), indicating a stable river bed during this period (Figure 5(a)). The 
linear correlations between WL and Q became weak (R2=0.50) for the second sub-period. Seasonal dynamics of 
SSC and Q were further assessed through the climatological year, which was defined by averaging for each day of 
the year all measurements available over the observation period for that specific day [31]. For the two sub-periods, 

peak values of SSC and Q were both apparent during the summer period (Figure 6). In the first sub-period (1967–
1981), SSC correlated well with Q (R2=0.80) with a power function (Equation (2)). However, for the second sub -
period (1982–2017), the correlation between SSC and Q became weak (R2=0.62). Monthly averaged SSC and Q 
in the period 1967–1981 exhibited similar seasonal characteristics (Figure 7). However, monthly averaged SSC 
and Q in the period 1982–2017 exhibited different seasonal patterns after August (Figure 7). Notably, the average 
monthly mean SSC value in the flood season during the period 1982–2017 was even smaller than that in the dry 
season during the period 1967–1981.  

For Donji Miholjac station, a sharp decrease of SSC and suspended sediment load also began in 1982 (Figure 
4(b)), dividing the time series into two sub-periods: the first from 1971 to 1981, and the second from 1982 to 2017. 
However, Q and WL did not exhibit a clear trend. For Donji Miholjac station, WL was linearly correlated with Q 
(R2=0.95), indicating a stable river bed in these 47 years (Figure 8). When expressed on a climatological year, both 
SSC and Q were concentrated in the summer period during the flood season (Figure 9). Additionally, for the first 
sub-period (1971–1981), high SSC values were observed in spring and SSC was poorly correlated with Q (R2=0.38) 
with a power function (Equation (2)). However, for the second sub-period (1982–2017), the correlation between 
SSC and Q became stronger (R2=0.56). Monthly averaged SSC in both periods exhibited seasonal characteristics, 
following the pattern of Q (Figure 10). Notably, the average monthly mean SSC value in the flood season during 
the period 1982–2017 was far smaller than that in the dry season during the period 1971–1981.  
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Figure 4 Temporal variations of RAPS values for annual averaged Q, SSC, WL, and suspended 

sediment  load at the two gauging stations: (a) Botovo and (b) Donji Miholjac 
 

    
Figure 5 Flow discharge and water level relations at Botovo station: (a) 1967–1981, (b) 1982–2017 

 

      
Figure 6 Seasonal variations of daily averaged SSC (a) and Q (b) at Botovo station for the 

climatological  year 
 

-30

-20

-10

0

10

20

30

1966 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014 2018

R
AP

S

Year

(a)SSC Q Load WL

-10

-5

0

5

10

15

20

1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014 2018

R
AP

S

Year

(b)SSC Q Load WL

y = 0.2961x - 77.425
R² = 0.9625

0

20

40

60

80

100

120

140

300 400 500 600 700 800

W
L 

(c
m

)

Q (m3/s)

(a) y = 0.3139x - 5.5017
R² = 0.5017

0

50

100

150

200

250

300 400 500 600 700 800

W
L 

(c
m

)

Q (m3/s)

(b)

0

20

40

60

80

100

120

0 100 200 300 400

S
S

C
 (

m
g/

L)

Day of year

(a)1967-1981 1982-2017

0

200

400

600

800

1000

0 100 200 300 400

Q
 (m

3
/s

)

Day of year

(b)1967-1981 1982-2017



Number 19, Year 2019         Page 1-12 
 
Assessing sediment regime alteration of the lower Drava River 

   

Zhu, S, Bonacci, O, Oskoruš, D 

https://doi.org/10.13167/2019.19.1  7 

   
Figure 7 Monthly averaged SSC (a) and Q (b) at Botovo station 

 

 

 
Figure 8 Flow discharge and water level relationship at Donji Miholjac station 

 

 

   
Figure 9 Seasonal variations of daily averaged SSC (a) and Q (b) at Donji Miholjac station for the 

 climatological  year 
 
 

     
Figure 10 Monthly averaged SSC (a) and Q (b) at Donji Miholjac station 
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 The sudden alteration of sediment regime and the sharp decreases of SSC at the two gauging stations in the 
lower Drava River began from the 1980s. Suspended sediment load decreased about 65% from 1967–1981 

(0.922×106 t/year) to 2003–2017 (0.323×106 t/year) for the Botovo station. For the Donji Miholjac station, suspended 
sediment load decreased about 81% from 1971–1981 (1.383×106 t/year) to 2007–2017 (0.263×106 t/year). In 
previous studies, in the time series of many climate-related variables (e.g. Q, WL, and water temperature), a rather 
sudden change, or an inflection point, had been observed around the mid-1980s [19-21, 32-35]. Results of the 
current study further confirmed this conclusion. Based on the operating times of the three reservoirs in the lower 
Drava River (Table 2), it can be concluded that the sharp decreases of SSC and sediment load are greatly impacted 
by the construction and operation of reservoirs. In addition, the management of about 80 km of the lower Drava 
River bed and the adjacent catchment from the 1980s by “river training” measures, also plays an important role 
[22]. Regional climate change as well as other anthropogenic influences (i.e. material excavation) could be 
additional reasons for this decreasing trend [20]. Kopački Rit is located at the confluence of the Drava River and 
the Danube River. It is one of the most important and well-preserved natural wetlands in Europe. Compared to the 
wetland area of 37 000 ha that existed in the 18th century, there has been a substantial reduction of flood retention 
capacity along the left bank, downstream to Osijek, which may have been caused by the regulation works employed 
to deal with the sharp decreases of SSC and sediment load from the Drava River to the Danube River [22]. This 
issue may bring serious consequences, which should be considered. 

 

3.2 Modeling of SSC and Q relationships 

Figure 11 shows the correlation coefficients between monthly averaged SSC and Q for each year at the two gauging 
stations. For Botovo station, in 84% of cases, the correlation coefficients between monthly averaged SSC and Q in 
each year exceeded 0.6, which indicates that using Q for regression of monthly averaged SSC is generally fine at 
this station. However, at the Donji Miholjac station, only 66% of the correlation coefficients between monthly 
averaged SSC and Q in each year exceeded 0.6, and in some years, the correlation coefficients were lower than 
0.0, indicating that using Q for regression of monthly averaged SSC may not be appropriate at this station. The 
difference is probably linked with the spatial and temporal dynamics of the anthropic pressures in the river channel 
and the associated channel processes. The management of about 80 km of the lower Drava River bed and the 
adjacent catchment by “river training” measures [22] greatly altered the sediment regime at the Donji Miholjac 
station. Using the traditional SRC method, the regression formulae were derived for each gauging station at monthly 
intervals, to give:  
 

SSC=0.006Q
1.34

     R=0.65   RMSE=15.69 (Botovo)          (5) 
 

SSC=0.189Q
0.89

     R=0.29   RMSE=29.70  (Donji Miholjac)        (6) 
  

The result of Botovo station was acceptable (R=0.65, RMSE=15.69 mg/L). However, for Donji Miholjac 
station, the result was poor (R=0.29, RMSE=29.70 mg/L). In order to improve modeling performance, SSC was 
regressed using the SSC from the previous month (SSCt-1), and Q in the same month (Qt). The results of the new 
regression were far better, with larger R and lower RMSE values. For both stations, R values exceeded 0.8 and 
RMSE values decreased significantly, especially for the Donji Miholjac station:  

   

SSC𝑡 = 0.541SSCt-1+0.0005Q𝑡
1.6

    R=0.80   RMSE=12.32 (Botovo)      (7) 
 

SSC𝑡 = 0.836SSCt-1+0.0005Q𝑡
1.453

   R=0.866   RMSE=15.52 (Donji Miholjac)     (8) 
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Figure 11 Correlation coefficients of the regression of monthly averaged SSC and Q for each year at 

the two gauging stations: (a) Botovo and (b) Donji Miholjac 

 
Using the traditional SRC method, regression formulas were derived for each gauging station at a daily time-

scale: 

SSC=0.053Q
0.993

     R=0.54   RMSE=26.87 (Botovo)          (9) 

SSC=0.153Q
0.843

     R=0.27   RMSE=38.80 (Donji Miholjac)        (10) 
 
 The results of both stations were poor and consequently SSC was regressed using the SSC from the previous 
day (SSCt-1), and Q in the same day (Qt). The results of the new regression were better, with higher R values and 
lower RMSE values. For both stations, R values exceeded 0.7. Figure 12 presents the comparison of modeled and 
observed SSC values for 2015–2017 at the two gauging stations. The new SRC formula captured the seasonal 
dynamics of SSC, especially for lower SSC values. However, the new SRC formula failed to accurately model 
extreme SSC values (Figure 8), which has been a general problem for various models [28, 36-38]. Compared with 
the traditional SRC method, which employs only Q to obtain SSC, the new SRC formula is more stationary since it 
considered SSC values from the previous day or month. The poor performance of the traditional SRC method also 
indicated that the power function in Equation (2) may not be applicable for all river stations, which has also been 
discussed in [38].            
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1.22

    R=0.73   RMSE=21.54 (Botovo)      (11) 
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Figure 12 Comparison of modeled and observed SSC values for the time period of 2015–2017 at the two

 gauging stations: (a) Botovo and (b) Donji Miholjac 

4 CONCLUSIONS 

Using the RAPS method, the alteration to the sediment regime of the lower Drava River was assessed and its 
possible causes were discussed. Suspended sediment load decreased about 65% between 1967–1981 (0.922×106 
t/year) and 2003–2017 (0.323×106 t/year) for the Botovo station. For the Donji Miholjac station, suspended sediment 
load decreased about 81% between 1971–1981 (1.383×106 t/year) and 2007–2017 (0.263×106 t/year). The sudden 
alteration of sediment regime and the sharp decreases of SSC at the two gauging stations began from the 1980s. 
This indicates that the change was mainly caused by the construction and operation of reservoirs, and the 
implementation of river training measures. The SSC-Q relationships were assessed by a new formulation of the 
SRC. Compared with the traditional SRC approach, the new form of SRC performed far better, with higher R values 
and lower RMSE values, and was able to better capture seasonal dynamics of SSC at daily and monthly time -
scales. The results in this study can be used in designing river management and rehabilitation measures for the 
Drava River. 

While SSCt was regressed from SSC t-1, SSCt-2,..., as well as Qt, Qt-1, Qt-2 using Excel Solver, modelling 
accuracy was not improved. Therefore, the best form is presented in this paper. 
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